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The sarcoplasmic proteome of beef Longissimus lumborum demonstrating animal-to-animal variation in color
stability was examined to correlate proteome profile with color. Longissimus lumborum (36 h post-mortem)
muscles were obtained from 73 beef carcasses, aged for 13 days, and fabricated to 2.5-cm steaks. One steak
was allotted to retail display, and another was immediately vacuum packaged and frozen at −80 °C.
Aerobically packaged steaks were stored under display, and color was evaluated on days 0 and 11. The steaks
were ranked based on redness and color stability on day 11, and ten color-stable and ten color-labile carcasses
were identified. Sarcoplasmic proteome of frozen steaks from the selected carcasses was analyzed. Nine proteins
were differentially abundant in color-stable and color-labile steaks. Three glycolytic enzymes (phosphoglucomu-
tase-1, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase M2) were over-abundant in color-
stable steaks and positively correlated (P b 0.05) to redness and color stability. These results indicated that animal
variations in proteome contribute to differences in beef color.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Color of fresh beef is one of the most important attributes influenc-
ing the purchase intention (Mancini & Hunt, 2005; Suman, Hunt, Nair,
& Rentfrow, 2014). Consumers prefer a bright cherry-red color
for beef and associate it with freshness and wholesomeness. Color
deterioration during retail display is perceived as undesirable because
discolored meat is often considered unwholesome by consumers, lead-
ing to product rejection. In the United States, the beef industry loses
more than $1 billion per year due to discoloration (Smith, Belk, Sofos,
Tatum, & Williams, 2000). The pigment primarily responsible for meat
color is myoglobin; the redox stability of myoglobin and color of fresh
meat are governed by a multitude of endogenous as well as exogenous
factors (Suman & Joseph, 2013).

Beef color stability is a highly muscle-specific trait (Joseph, Suman,
Rentfrow, Li, & Beach, 2012; King, Shackelford, & Wheeler, 2011;
McKenna et al., 2005). With respect to the biochemistry of meat color,
14-07-018 by the Director of
Longissimus lumborum (LL) is a major beef muscle that has been exten-
sively studied. LL is a relatively color-stable muscle and demonstrates
low oxygen consumption rate (O'Keeffe & Hood, 1982) and increased
metmyoglobin reducing activity (Ledward, 1985; Seyfert et al., 2006),
both of which favor formation of reduced redox ferrous forms of myo-
globin. Previous research in the United States suggested that animal-
to-animal variations influence the color stability and discoloration of
beef LL steaks during retail display (King, Shackelford, Rodriguez, &
Wheeler, 2011; King, Shackelford, & Wheeler, 2011). Nonetheless, the
molecular mechanisms of these variations are yet to be completely
understood.

The advances in proteomic techniques, such as mass spectrometry,
two-dimensional electrophoresis, and bioinformatics, have been
applied successfully to explain fundamental bases of meat color phe-
nomena (Suman, Rentfrow, Nair, & Joseph, 2014). Previous research
successfully employed proteomic tools to interpret species-specific na-
ture of meat color stability in livestock and poultry (Joseph, Suman, Li,
Beach, & Claus, 2010; Nair, Suman, Li, Joseph, & Beach, 2014; Suman,
Faustman, Stamer, & Liebler, 2007). Further investigations documented
the contribution of sarcoplasmic proteome onmuscle-specificity in beef
color (Joseph et al., 2012; Suman, Nair et al., 2014). Although a proteo-
mic approach could elucidate the biochemical basis of animal effect on
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beef color stability, investigations are yet to be undertaken in this
direction. Therefore, the objectives of the present study were — (1) to
characterize the sarcoplasmic proteome of LL steaks frombeef carcasses
demonstrating variations in retail color stability; and (2) to correlate
the color stability attributes to differentially abundant proteome
components.
2. Materials and methods

2.1. Sample collection

Seventy-three beef carcasses were selected from a commercial pro-
cessing facility as they were presented for grading at approximately
36 h post-mortem. After ribbing between the 12th and 13th ribs,
carcass grade data were collected using an image analysis-based (VBG
2000) grading system (Shackelford, Wheeler, & Koohmaraie, 2003).
All carcasses (USDA Select) demonstrated normal lean color and firm-
ness, and had similar marbling scores (between Slight00 and Slight90).
In addition, the pHwasmeasured on the anterior surface of the LLmus-
cle on the right side of each carcass with a Reed SD-230 handheld pH
meter (Reed Instruments, Wilmington, NC, USA). The carcasses were
fabricated, and the striploins (IMPS #180; NAMP, 2007) were obtained
from the left sides. Striploins were transported in a refrigerated truck
(0 °C) to the U.S. Meat Animal Research Center abattoir and were aged
until 13 days post-mortem. After aging, striploins were cut, and the LL
muscle was separated. The most anterior third of LL was removed,
and the remaining portion was cut into 2.54-cm steaks. One steak was
allotted to simulated retail display, and another steak was immediately
vacuum packaged and frozen at−80 °C.
2.2. Simulated retail display and instrumental color evaluation

The steaks allotted to retail display were placed on polystyrene
trays with soaker pads and over-wrapped with oxygen-permeable
polyvinylchloride (PVC) film (stretchable meat film 55003815; Prime
Source, St. Louis, MO, USA; oxygen transmission rate = 1.4 mL/cm2/24 h
at 23 °C). Individually packaged steaks were placed under continuous
fluorescent lighting (color temperature = 3500 K; color rendering
index = 86; 32 W; T8 Ecolux bulb, model number F32T8/SPX35, GE,
GE Lighting, Cleveland, OH, USA) for 11 days. Light intensity at the
meat surface was approximately 2000 lx. Retail display was conducted
in a refrigerated room (1 °C), and no temperature fluctuations associated
with defrost cycles were encountered.

Instrumental color readings were taken at two random locations
on each steak on days 0 and 11 of retail display. CIE L* (lightness),
a* (redness), and b* (yellowness) values were measured on the
light-exposed steak surfaces with a HunterLab Miniscan XE Plus color-
imeter (Hunter Associates Laboratory, Reston, VA, USA) using 2.54 cm
diameter aperture, illuminant A, and 10° standard observer (AMSA,
2012). In addition, the ratio of reflectance at 630 nm and 580 nm
(R630/580) was calculated as an indirect estimate of surface color
stability; a greater ratio indicates a lesser amount of metmyoglobin/
brown discoloration and thus greater color stability. On day 0, steaks
were allowed to bloom at least 2 h (after aerobically packaged) in retail
display before color evaluation.

Instrumental color data on steaks from the seventy-three carcasses
were ranked based on the a* value and R630/580 on day 11. From this
ranking, the ten (n = 10) most color-stable and ten (n = 10) most
color-labile steaks were identified to examine the molecular basis of
animal-to-animal variation in color stability. The carcasses corresponding
to these steaks were identified, and the vacuum-packaged frozen LL
steaks from the selected twenty carcasses (collected during fabrication)
were shipped in dry ice to the University of Kentucky for proteome
analysis.
2.3. Myoglobin concentration

Myoglobin concentration was determined according to the method
of Faustman and Phillips (2001). Duplicate 5 g frozen samples were ho-
mogenized in 45mL ice cold 40mM sodium phosphate buffer at pH 6.8.
The homogenate was filtered using Whatman no. 1 filter paper, and
the absorbance of the filtrate at 525 nm (A525) was recorded using
UV-2401PC spectrophotometer (Shimadzu Inc., Columbia, MD, USA)
with sodium phosphate buffer as blank. Myoglobin concentration was
calculated using the following equation.

Myoglobin mg=gð Þ ¼ ½A525=ð7:6 mM−1 cm−1 � 1 cmÞ�
� 17;000=1000½ � � 10

where, 7.6 mM−1 cm−1 =millimolar extinction coefficient of myoglo-
bin at 525 nm; 1 cm = path length of cuvette; 17,000 Da = average
molecular mass of myoglobin; 10 = dilution factor.

2.4. Isolation of sarcoplasmic proteome

The sarcoplasmic proteome from beef LL steaks (color-stable and
color-labile groups) was extracted as described by Joseph et al. (2012).
Frozen samples (5 g) were cut and homogenized in 25 mL ice-cold ex-
traction buffer (40 mM Tris, 2 mM EDTA, and pH 8.0). The homogenate
was centrifuged at 10,000 ×g for 15 min at 4 °C. The supernatant
consisting of soluble sarcoplasmic proteome was filtered and utilized
for analysis.

2.5. Two-dimensional electrophoresis (2-DE)

Bradford assay was used to determine the protein concentration of
the sarcoplasmic proteome extract (Bio-Rad, Hercules, CA, USA). The
sarcoplasmic protein extract (1200 μg) was mixed with rehydration
buffer optimized to 7 M urea, 2 M thiourea, 4% CHAPS, 20 mM DTT,
0.5% Bio-Lyte 5/8 ampholyte (Bio-Rad), and 0.001% bromophenol blue.
The mix was applied onto immobilized pH gradient (IPG) strips
(pH 5–8, 17 cm), and was subjected to passive rehydration for
16 h. After passive rehydration, the IPG strips were subjected to
first-dimension isoelectric focusing (IEF) in a Protean IEF cell system
(Bio-Rad) by applying a linear voltage increase initially, and a final rapid
voltage ramping to reach a total of 80 kVh. Subsequently the IPG strips
were equilibrated in SDS-containing buffers, first with equilibration
buffer I (containing 6 M urea, 0.375 M Tris–HCl, pH 8.8, 2% SDS, 20%
glycerol, 2% (w/v) DTT; Bio-Rad) followed by equilibration buffer II
(containing 6 M urea, 0.375 M Tris–HCl, pH 8.8, 2% SDS, 20% glycerol,
2.5% iodoacetamide; Bio-Rad), each for 15min. In the seconddimension,
13.5% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE; 38.5:1 ratio of acrylamide to bis-acrylamide) was employed for
protein separation, using Protean II XL system (Bio-Rad). The staining
wasperformed for 48husing colloidal Coomassie Blue, and thedestaining
was done for 48 h until the background was cleared. Color-stable and
color-labile samples were run in parallel under the same conditions.
Two gels per steak were produced; ten steaks were used for each group
resulting in 40 gels.

2.6. Gel image analysis

The gel images were digitalized using VersaDoc (Bio-Rad) and were
analyzed by PDQuest software (Bio-Rad). Spots were detected and
then matched with the aid of landmarks, which are well-resolved
spots present in every gel image. Matched spots exhibiting a 1.5-fold
or more intensity difference between color-stable and color-labile
groups and associated with 5% statistical significance (P b 0.05) in the
Student's t-test were considered differentially abundant (Joseph et al.,
2012).



Table 1
Instrumental color of color-stable and color-labile beef Longissimus lumborum steaks dur-
ing refrigerated retail display.

Display days

Parameter Category 0 11

L* value Color-stable 42.52 ± 0.83 ax 40.48 ± 1.06 bx

Color-labile 43.32 ± 0.93 ax 38.79 ± 1.18 bx

a* value Color-stable 34.65 ± 0.46 ay 31.49 ± 0.90 bx

Color-labile 36.43 ± 0.40 ax 12.22 ± 0.57 by

b* value Color-stable 27.12 ± 0.55 ax 25.78 ± 0.76 bx

Color-labile 28.65 ± 0.47 ax 17.42 ± 0.84 by

R630/580 Color-stable 8.71 ± 0.28 ax 6.97 ± 0.47 bx

Color-labile 9.45 ± 0.36 ax 1.17 ± 0.04 by

Results (n = 10) are expressed as the mean ± standard error.
Means without common superscripts (a–b) in a row are different (P b 0.05).
Means without common superscripts (x–y) in a column within a parameter are different
(P b 0.05).

92 A.C.V.C.S. Canto et al. / Meat Science 102 (2015) 90–98
2.7. Protein identification by mass spectrometry

Pipet tips were used to remove the selected spots from the gels. The
spots were destained with 50 mMNH4HCO3/50% CH3CN, homogenized
using vortex for 10 min, and dried in a vacuum centrifuge. The proteins
present in the gel pieceswere first reduced by addition of 10mMDTT in
50mMNH4HCO3, followed by alkylation with 50mM iodoacetamide in
50 mM NH4HCO3, both for 30 min. The gel pieces were washed two
times using 50 mM NH4HCO3 solution, once with CH3CN, and then
partially dried. Further, the gel pieces were rehydrated for 1 h (on ice)
with 40 mM NH4HCO3/9% CH3CN, containing proteomic grade trypsin
(Sigma, St. Louis, MO, USA) at a concentration of 20 ng/μL. Additional
volume of 40 mM NH4HCO3/9% CH3CN was added, and the samples
were incubated for 18 h at 37 °C. Two extractions of the peptides from
the gel pieces were done— first using 0.1% trifluoroacetic acid, and sec-
ond using a solution of 50% acetonitrile containing 0.1% trifluoroacetic
acid; both extracts were then combined. The concentration and
desalting of the peptide extracts were performed by solid phase extrac-
tion using a 0.1–10 μL pipet tip (Sarstedt, Newton, NC, USA) packed
with 1 mm of Empore C-18 (3 M, St. Paul, MN, USA). The peptides
were eluted in 5 μL of 50% CH3CN/0.1% trifluoroacetic acid solution.

The concentrated and desalted peptide extracts (0.3 μL) were trans-
ferred onto an Opti-TOF 384 well insert (Applied Biosystems, Foster
City, CA, USA) using 0.3 μL of 5 mg/mL α-cyano-4-hydroxycinnamic
acid (Aldrich, St. Louis, MO, USA) in 50% CH3CN/0.1% trifluoroacetic
acid. A 4800MALDI TOF-TOF Proteomics Analyzer (Applied Biosystems)
was used to analyze the crystallized samples. From the initialMALDIMS
spectrum for each spot, 15 peptide peaks with a signal-to-noise ratio of
N20 were subjected to MS–MS for fragmentation and analysis by post-
source decay. The MS–MS data were submitted for database similarity
search using Protein Pilot 2.0 (Applied Biosystems) in the National
Center for Biotechnology Information (NCBI) and UniProt databases to
identify proteins.

2.8. Statistical analysis

In this study, LL steaks from ten carcasses were used in each treat-
ment (color-stable and color-labile) providing ten replicates (n = 10).
The PROC MIXED procedure (SAS, 2011) with a repeated measure
design was used to analyze the data on instrumental color parameters
(L*, a*, b*, and R630/580) at 0 and 11 days of retail display. The effects
of treatment (color-stable vs. color-labile), retail display, and their inter-
action were analyzed. Data for muscle pH andmyoglobin concentration
were analyzed for the effect of treatment. The differences between
means were detected using Least Significant Difference (LSD) test
at 5% significance (P b 0.05) level. In addition, PROC CORR procedure
was used to determine the Pearson's correlation coefficients between
the differentially abundant protein spots and the instrumental color pa-
rameters (SAS, 2011).

3. Results and discussion

3.1. Muscle pH and myoglobin concentration

The pH (measured in the carcass sides) was similar (P N 0.05) for the
color-stable (5.70±0.04) and color-labile (5.61±0.03) LLmuscles. Fur-
thermore, the concentration of myoglobin was not different (P N 0.05)
between color-stable (4.05 ± 0.27 mg/g) and color-labile (4.56 ±
0.23 mg/g) steaks. In partial agreement with our results, Sammel et al.
(2002) observed no difference in the myoglobin concentration of beef
inside and outside Semimembranosus muscles, which exhibited differ-
ences in color stability. In contrast to our findings, King, Shackelford,
Rodriguez, andWheeler (2011) reported greater myoglobin concentra-
tion in the color-labile beef loin steaks than in color-stable loin steaks.
Several previous investigations attempted to characterize the relation-
ship between myoglobin concentration and color stability in different
beef muscles. McKenna et al. (2005) examined color biochemistry in
19 different beef muscles and reported that, in general, color-stable
muscles exhibited lower myoglobin content than the color-labile ones.
Furthermore, King, Shackelford, and Wheeler (2011) reported that
color-stable beef longissimus muscle exhibited lower myoglobin con-
centration than the color-labile Triceps brachii. Jeong et al. (2009) also re-
ported lower myoglobin concentration in color-stable beef longissimus
than in color-labile Psoas major.

3.2. Instrumental color

The instrumental color data of color-stable and color-labile steaks on
days 0 and 11 of retail display are presented in Table 1. All the color pa-
rameters demonstrated a decrease (P b 0.05) from day 0 to day 11.
While several previous studies investigated intermuscular variation in
beef color stability (Joseph et al., 2012; McKenna et al., 2005; Seyfert
et al., 2006), limited work has been undertaken to examine color stabil-
ity variations observed in a specific muscle from different carcasses. In
thepresent study, on day 0, the color-labile steaks demonstrated greater
(P b 0.05) a* values (redness) than the color-stable ones; nonetheless a*
values of the two groupswere numerically close. On the other hand, the
L* (lightness), b* (yellowness), and R630/580were similar (P N 0.05) for
the two groups. In partial agreement with our data, King, Shackelford,
Rodriguez, and Wheeler (2011) studied the color stability of the beef
Longissimus thoracis and observed greater a* values in the color-labile
steaks than in the color-stable ones on the first day of display, whereas
the L* values and metmyoglobin content on meat surface were not
different between the two groups.

After eleven days of refrigerated retail display, the L* values were
similar (P N 0.05) for both groups (Table 1). Color-stable steaks exhibited
greater (P b 0.05) a*, b*, and R630/580 than the color-labile samples
on day 11. Although both groups demonstrated a decrease (P b 0.05)
in a*, b*, and R630/580, the color-labile steaks exhibited a greater
decline between days 0 and 11 than their color-stable counterparts.
In agreement with our results, King, Shackelford, Rodriguez, and
Wheeler (2011) reported that longissimus steaks in color-stable
group exhibited greater a* and b* values and lower metmyoglobin con-
tent on surface than the color-labile longissimus steaks on day 6 of retail
display.

3.3. Sarcoplasmic proteome profile

The image analyses of the Coomassie-stained gels identified
twelve differentially abundant protein spots (Fig. 1 and Table 2) in
color-stable and color-labile longissimus muscles. Nine protein spots
over-abundant (P b 0.05) in color-stable steaks (Table 3) were identi-
fied as phosphoglucomutase-1 (in 2 different spots), glyceraldehyde-
3-phosphate dehydrogenase (in 3 different spots), pyruvate kinase



Fig. 1.Coomassie-stained two-dimensional gel of the sarcoplasmic proteome extracted frombeef Longissimus lumborum steak. Twelve protein spots differentially abundant in color- stable
and color-labile steaks are numbered.
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M2, creatine kinase M-type, myosin regulatory light chain 2, and myo-
sin light chain 1/3. The other three protein spots were over-abundant
(P b 0.05) in color-labile samples (Table 3) and were identified as ade-
nylate kinase isoenzyme 1, phosphatidylethanolamine-binding protein
1, andmyoglobin. The differentially abundant proteinswere involved in
glycolysis, ATP metabolism, muscle contraction, signaling, and oxygen
transport (Table 3).
Table 2
Differentially abundant sarcoplasmic proteins in color-stable and color-labile beef Longissimus

Spota Accession number Protein

1 Q08DP0 Phosphoglucomutase-1
2 Q08DP0 Phosphoglucomutase-1
3 P10096 Glyceraldehyde-3-phosphate dehydrogenase
4 P10096 Glyceraldehyde-3-phosphate dehydrogenase
5 P10096 Glyceraldehyde-3-phosphate dehydrogenase
6 gi|73587283 Pyruvate kinase M2
7 Q9XSC6 Creatine kinase M-type
8 Q0P571 Myosin regulatory light chain 2
9 A0JNJ5 Myosin light chain 1/3
10 P00570 Adenylate kinase isoenzyme 1
11 P13696 Phosphatidylethanolamine-binding protein 1
12 P02192 Myoglobin

For each spot, parameters related to protein identification are provided, including accession num
tandem mass spectrometry.

a Spot number refers to the numbered spots in gel image (Fig. 1).
3.4. Functional roles of differentially abundant proteins and their correlation
with color traits

Six differentially abundant proteins correlated (P b 0.05; Table 4)with
instrumental color parameters. Five proteins (phosphoglucomutase-1,
glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase M2, myo-
sin regulatory light chain 2, and myosin light chain 1/3) over-abundant
lumborum steaks.

Species ProtScore/ matched peptides Sequence coverage (%)

Bos taurus 16.43/14 25.4
Bos taurus 22.00/13 30.1
Bos taurus 8.40/6 21.9
Bos taurus 5.65/4 10.8
Bos taurus 7.36/6 17.1
Bos taurus 8.19/4 15.4
Bos taurus 11.82/9 20.2
Bos taurus 9.52/4 30
Bos taurus 12.00/11 42.7
Bos taurus 13.03/11 40.2
Bos taurus 5.36/3 37.4
Bos taurus 12.00/11 48.1

ber; species; ProtScore and number ofmatchedpeptides; sequence coverageof peptides in



Table 3
Functional roles of the differentially abundant sarcoplasmic proteins in color-stable and color-labile beef Longissimus lumborum steaks.

Spota Protein Function Over-abundant category Spot ratio

1 Phosphoglucomutase-1 Glycolytic enzyme Color-stable 1.8b

2 Phosphoglucomutase-1 Glycolytic enzyme Color-stable 2.1b

3 Glyceraldehyde-3-phosphate dehydrogenase Glycolytic enzyme Color-stable 1.9b

4 Glyceraldehyde-3-phosphate dehydrogenase Glycolytic enzyme Color-stable 2.0b

5 Glyceraldehyde-3-phosphate dehydrogenase Glycolytic enzyme Color-stable 2.4b

6 Pyruvate kinase M2 Glycolytic enzyme Color-stable 1.7b

7 Creatine kinase M-type ATP regeneration Color-stable 1.8b

8 Myosin regulatory light chain 2 Muscle contraction Color-stable 2.4b

9 Myosin light chain 1/3 Muscle contraction Color-stable 2.0b

10 Adenylate kinase isoenzyme 1 Adenosine phosphate metabolism Color-labile 1.6c

11 Phosphatidylethanolamine-binding protein 1 Signaling Color-labile 1.7c

12 Myoglobin Oxygen transport Color-labile 2.3c

a Spot number refers to the numbered spots in gel image (Fig. 1).
b Spot ratio of color-stable/color-labile.
c Spot ratio of color-labile/color-stable.
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in color-stable group exhibited a positive correlation (P b 0.05) with a*
value (r = 0.52–0.69). In addition, four proteins (phosphoglucomutase-
1, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase M2,
andmyosin regulatory light chain 2) over-abundant in color-stable steaks
were positively correlated (r=0.54–0.65) to R630/580 (P b 0.05). On the
other hand, phosphatidylethanolamine-binding protein 1, over-abundant
in the color-labile group, demonstrated a negative correlation (P b 0.05)
with a* value (r =−0.58) and R630/580 (r =−0.59).

3.4.1. Glycolytic enzymes
Three different enzymes (phosphoglucomutase-1, glyceraldehyde-

3-phosphate dehydrogenase, pyruvate kinaseM2) involved in glycolytic
metabolism were over-abundant (P b 0.05) in the color-stable group
(Table 3). The presence of different isoforms of phosphoglucomutase-1
and glyceraldehyde-3-phosphate dehydrogenase exhibiting different
isoelectric pH (Fig. 1) could be attributed to possible post-translational
modifications such as phosphorylation previously reported in these pro-
teins (Anderson, Lonergan, & Huff-Lonergan, 2014; Bouley, Chambon, &
Picard, 2004; Huang et al., 2011).

Phosphoglucomutase-1 catalyzes the reversible transfer of a
phosphate group between positions 1 and 6 in a glucose molecule
(Cori, Colowick, & Cori, 1938). Phosphorylation of threonine residue at
position 466 increases the enzymatic activity of this protein (Gururaj,
Barnes, Vadlamudi, & Kumar, 2004) accelerating the conversion of
glucose-1-phosphate to glucose-6-phosphate (Anderson et al., 2014),
which in turn favors the generation of substrates necessary for re-
generation of NADH. Glyceraldehyde-3-phosphate dehydrogenase is
an enzyme catalyzing the reversible conversion of glyceraldehyde-3-
phosphate and NAD+ to 1,3-bisphosphoglycerate and NADH (Kim &
Dang, 2005). The active enzyme is composed of four identical subunits,
each of which contains a reactive cysteine residue; the binding of
NAD+ at the reactive cysteines activates the enzyme (Harris &
Perham, 1965). The mammalian pyruvate kinase M2 is also a homo-
Table 4
Pearson's correlation between instrumental color parameters on day 11 retail display and diffe

Protein Over-abundant catego

Phosphoglucomutase-1 Color-stable
Glyceraldehyde-3-phosphate dehydrogenase Color-stable
Pyruvate kinase M2 Color-stable
Myosin regulatory light chain 2 Color-stable
Myosin light chain 1/3 Color-stable
Phosphatidylethanolamine-binding protein 1 Color-labile
Phosphoglucomutase-1 Color-stable
Glyceraldehyde-3-phosphate dehydrogenase Color-stable
Pyruvate kinase M2 Color-stable
Myosin regulatory light chain 2 Color-stable
Phosphatidylethanolamine-binding protein 1 Color-labile
tetrameric glycolytic enzyme (Wooll et al., 2001) catalyzing the
dephosphorylation of phosphoenol pyruvate to pyruvate (Ainsworth
& Macfarlane, 1973; Mazurek, 2011).

Phosphoglucomutase-1, glyceraldehyde-3-phosphate dehydroge-
nase, and pyruvate kinase M2 were previously identified in proteome
profile studies on bovine skeletal muscles (Bouley et al., 2004; Chaze,
Bouley, Chambon, Barboiron, & Picard, 2006) and were related with
fast-twitch fibers exhibiting high glycolytic activity (Okumura et al.,
2005). The over-abundance of these enzymes can result in an increase
in glycolytic metabolism and thus can stimulate the production of
NADH and pyruvate, the latter of which is a mitochondrial substrate
that promotes NADH regeneration (Ramanathan & Mancini, 2010).
NADH is an important cofactor in enzymatic and non-enzymatic
metmyoglobin reduction (Echevarne, Renerre, & Labas, 1990; Renerre
& Labas, 1987). In support, Ramanathan and Mancini (2010) reported
that the addition of pyruvate to beef mitochondria regenerated NADH
(through tricarboxylic acid cycle) resulting in an electron transport-
mediated metmyoglobin reduction. Several previous investigations
documented the color-stabilization effect of NADH in beef and model
systems. Kim et al. (2006) reported that the addition of NAD+, lactate,
and LDH promoted non-enzymatic metmyoglobin reduction in model
system possibly due to NADH regeneration. Moreover, in the same
study beef LL steaks enhanced with 2.5% of potassium lactate exhibited
increased NADH concentration and improved color stability during re-
tail display. Further studies (Kim, Keeton, Smith, Berghman, & Savell,
2009) investigated the differences in color stability among three beef
muscles (LL, Semimembranosus, and Psoas major) and documented
that the color-stable LL demonstrated greater a* values and NADH con-
centration than the color-labile Psoas major during seven days of retail
display. Moreover, addition of pyruvate improved the color stability of
beef LL steaks (Ramanathan, Mancini, & Dady, 2011) and muscle
homogenates (Mohan, Hunt, Barstow, Houser, & Muthukrishnan,
2010). In addition, pyruvate decreased lipid oxidation in ground beef
rentially abundant sarcoplasmic proteins in beef Longissimus lumborum steaks.

ry Color parameter Correlation coefficient

a* value +0.57
a* value +0.61
a* value +0.55
a* value +0.69
a* value +0.52
a* value −0.58
R630/580 +0.62
R630/580 +0.65
R630/580 +0.54
R630/580 +0.62
R630/580 −0.59
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(Ramanathan, Mancini, Van Buiten, Suman, & Beach, 2012) and LL
steaks (Ramanathan et al., 2011), and thus can minimize discoloration
because lipid oxidation accelerates myoglobin oxidation (Faustman,
Sun, Mancini, & Suman, 2010; O'Grady, Monahan, & Brunton, 2001).

The greater glycolytic metabolism in color-stable LL steaks indicates
a possible low oxygen consumption, which minimizes myoglobin
autoxidation resulting in lower metmyoglobin accumulation than in
the color-labile steaks (O'Keeffe & Hood, 1982; Renerre & Labas,
1987). Differences in glycolytic metabolism between LL steaks in the
two color-stability categories could thus influence the inherent ability
to reduce metmyoglobin and minimize discoloration. This in turn
is explained by the observed positive correlation (P b 0.05) of the
three glycolytic enzymes with a* values and R630/580 (Table 4). In
agreement, several studies reported a correlation between glycolytic
enzymes and meat color traits. Joseph et al. (2012) investigated the
differences in the sarcoplasmic proteome of color-stable (LL) and
color-labile (Psoas major) beef muscles and reported that two glycolytic
enzymes (β-enolase and triose phosphate isomerase) were over-
abundant in LL and that β-enolase was positively correlated with
a* value. Previous investigations on pork quality reported correlation
of phosphoglucomutase-1 and glyceraldehyde-3-phosphate dehydro-
genase with instrumental color parameters. Zelechowska, Przybylski,
Jaworska, and Sante-Lhoutellier (2012) studied the role of sarcoplasmic
proteome in color attributes of pork longissimus and documented
that phosphoglucomutase-1 was correlated positively to L* value,
whereas glyceraldehyde-3-phosphate dehydrogenase was positively
correlated to b* value. In contrast, Kwasiborski et al. (2008) reported a
negative correlation of phosphoglucomutase-1 with a* values in pork
longissimus.
3.4.2. Creatine kinase M-type
Creatine kinase M-type was over-abundant (P b 0.05) in the color-

stable LL steaks (Table 3). This sarcoplasmic kinase helps maintaining
the ATP–ADP equilibrium in post-mortem skeletal muscles by catalyz-
ing the interconversion of ADP and phosphocreatine to ATP and creatine
(McLeish & Kenyon, 2005; Wallimann, Wyss, Brdiczka, Nicolay, &
Eppenberger, 1992). The anoxia-induced depletion of ATP in post-
mortem skeletal muscles leads to utilization of phosphocreatine by
the creatine kinase M-type to generate creatine and ATP (Hamm,
1977). The LL muscle is mostly composed of type IIb fast-twitch fibers,
which indicates a predominant glycolytic metabolism (Hamelin et al.,
2007). Previous reports documented that fast-twitch muscles have
greater creatine kinase content (Okumura et al., 2005) and phosphocre-
atine concentration (Kushmerick, Moerland, & Wiseman, 1992) than
the oxidative muscles. On their investigation using in vitro biological
model of skeletal muscle, Lawler, Barnes, Wu, Song, and Demaree
(2002) reported that creatine exhibited selective antioxidant property
through its free radical scavenging ability. In addition, another study
in living cells reported antioxidant functions of creatine through scav-
enging of reactive oxygen and nitrogen species (Sestili et al., 2006),
which are associated with oxidative and nitrosative stress (Ryter et al.,
2007). Free radicals promote protein oxidation in biological systems
(Stadtman & Berlett, 1997) contributing to meat discoloration
(Connolly, Brannan, & Decker, 2002; Faustman et al., 2010). The over-
abundance of creatine kinaseM-type in color-stable steaks can increase
the creatine content, which can minimize myoglobin oxidation and
improve color stability. In agreement with our results, Joseph et al.
(2012) reported greater abundance of creatine kinase M-type in the
color-stable beef LL steaks than in color-labile Psoas major steaks and
documented a positive correlation between the enzyme and a* value.
Furthermore, in pork Semimembranosus, Sayd et al. (2006) observed
an over-abundance of creatine kinase in light muscles than in their
dark counterparts. In addition, Kwasiborski et al. (2008) studied the
sarcoplasmic proteome of pork longissimus and reported that creatine
kinase was positively correlated to a* value.
3.4.3. Myofibrillar proteins
Two myofibrillar proteins (myosin regulatory light chain 2 and my-

osin light chain 1/3) were over-abundant (P b 0.05) in color-stable LL
steaks (Table 3). Previous research reported that LLmuscle is composed
predominantly of fast-twitch type IIb fibers (Hamelin et al., 2007;
Hwang, Kim, Jeong, Hur, & Joo, 2010), which are associated with glyco-
lytic metabolism (Peter, Barnard, Edgerton, Gillespie, & Stempel, 1972).
A myosin molecule consists of two heavy chains, two essential light
chains, and two regulatory light chains (Schiaffino & Reggiani, 1996).
The two types of essential light chains (myosin light chains 1 and
3) are transcribed from the same gene and thus exhibit significant sim-
ilarities in their amino acid sequences (Barton & Buckingham, 1985). In
skeletal muscles, fast-twitch fibers are mainly composed of fast-type
myosin regulatory light chain 2 and myosin light chain 1/3 (Bicer &
Reiser, 2004; Schiaffino & Reggiani, 1994). The appearance of myofibril-
lar proteins in sarcoplasmic fraction can be attributed to the 13 days
aging prior to retail display. Previous studies (Lametsch, Roepstorff, &
Bendixen, 2002; Lametsch et al., 2006) reported that the cleavage at
myosin neck region during aging releases the myosin light chains
from actomyosin complex resulting in their migration frommyofibrillar
proteome to the soluble sarcoplasmic proteome. The myofibrillar pro-
teins over-abundant in color-stable steaks are fast-type indicating pre-
dominance of fast-twitch type IIb fibers in color-stable steaks than in
color-labile ones. Fast-twitch type IIb fibers are strongly glycolytic
(Peter et al., 1972), and the beef muscles demonstrating predominantly
glycolytic metabolism are color-stable (O'Keeffe & Hood, 1982).

Myosin regulatory light chain 2 andmyosin light chain 1/3were pos-
itively correlated (P b 0.05) to a* values (Table 4). Furthermore, myosin
regulatory light chain 2was positively correlated (P b 0.05) to R630/580
(Table 4). Our findings are in partial agreement with those of Oe et al.
(2011), who investigated the proteome differences between Masseter
(slow-twitch) and Semitendinosus (fast-twitch) muscles from Holstein
cows. These authors observed greater abundance of the three proteins
of our interest (myosin light chain 1 fast, myosin light chain 3 fast, and
myosin regulatory light chain fast) in Semitendinosus than in Masseter.
In addition, Semitendinosus demonstrated greater levels of glycolytic
enzymes (enolase-3, aldolase-A, glyceraldehyde-3-phosphate dehydro-
genase and triosephosphate isomerase) than masseter indicating that
fast-twitch muscles are associated with glycolytic metabolism.
3.4.4. Adenylate kinase isoenzyme 1
Adenylate kinase isoenzyme 1 catalyzes the reversible conversion

of two molecules of ADP to ATP and AMP (Heil et al., 1974) and was
over-abundant (P b 0.05) in the color-labile LL steaks (Table 3). While
the exact mechanisms through which adenylate kinase influences
color stability is not clear, our results are indirectly supported bymuscle
proteomic studies in Japanese Black cattle (Shibata et al., 2009).
These authors investigated the differences in proteome profile of
Semitendinosusmuscles from grass-fed and grain-fed cattle and report-
ed that adenylate kinase 1 was over-abundant in the grass-fed animals.
In addition, themuscles from grass-fed animals exhibited a greater con-
tent of slow-twitch myofibrillar proteins suggesting greater proportion
of slow-twitch oxidative muscle fibers (Peter et al., 1972) than their
counterparts from grain-fed cattle. On the other hand, several glycolytic
enzymes (β-enolase 3, fructose-1,6-bisphosphate aldolase A, and
triosephosphate isomerase) were over-abundant in the grain-fed cattle
indicating predominance of fast-twitch glycolytic muscle fibers. In
general, muscles with increased oxidative metabolism demonstrate
high oxygen consumption and are color-labile (O'Keeffe & Hood,
1982). Nonetheless, color attributes were not evaluated in the afore-
mentioned study (Shibata et al., 2009) to assess the relationship
betweenmuscle proteome and color stability. In contrast, previous pro-
teomic investigations in pork longissimus (Hwang, Park, Kim, Cho, &
Lee, 2005; Kwasiborski et al., 2008) reported no correlation between
adenylate kinase and color parameters.
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3.4.5. Phosphatidylethanolamine-binding protein 1
Phosphatidylethanolamine-binding protein 1 was over-abundant

(P b 0.05) in color-labile LL steaks (Table 3). This protein, also known
as Raf kinase inhibitor protein (Yeung et al., 1999), belongs to
phosphatidylethanolamine-binding protein family and is critically in-
volved in cell signaling pathways (Keller, Fu, & Brennan, 2004). This is
a cytosolic basic protein demonstrating affinity to organic anions and
was named due to its capacity to bind with phosphatidylethanolamine
(Bernier & Jolles, 1984; Bernier, Tresca, & Jolles, 1986). Further studies
suggested that phosphatidylethanolamine-binding protein has a
nucleotide-binding site (Schoentgen et al., 1992) and exhibits affinity
to nucleotides such as ATP (Bucquoy, Jolles, & Schoentgen, 1994).

While phosphatidylethanolamine-binding protein 1 demonstrated
a negative correlation (P b 0.05) with a* value and R630/580 (Table 4)
in the present study, the exact mechanisms throughwhich it influences
color biochemistry are not clear. Nonetheless, findings from previous
muscle proteomic studies were in agreement with our results.
Kwasiborski et al. (2008) observed that this protein was negatively cor-
related to a* and L* values in pork longissimus. Moreover, Shibata et al.
(2009) reported an over-abundance of phosphatidylethanolamine-
binding protein in the Semitendinosusmuscles from grass-fed beef cattle
compared with their counterparts from grain-fed animals; these
authors also observed that the Semitendinosus muscles from grass-fed
animals exhibited predominance of slow-twitch fibers. Skeletal muscles
consisting predominantly of slow-twitch fiber types are oxidative inme-
tabolism (Peter et al., 1972) and thus are color-labile (O'Keeffe & Hood,
1982). Results of the aforementioned studies indicated the necessity
Fig. 2. Coomassie-stained two-dimensional gel of the sarcoplasmic proteome extracted from b
labile steaks are numbered.
of further research on the role of phosphatidylethanolamine-binding
protein 1 in meat color.

3.4.6. Myoglobin
Spot 12 (Fig. 1) was over-abundant (P b 0.05) in color-labile steaks,

and the protein in this spot was identified as myoglobin (Tables 2 and
3). However, myoglobin concentration was similar (P N 0.05) in color-
stable and the color-labile LL steaks. Therefore, three more protein
spots exhibiting molecular weights similar to that of spot 12, but with
different isoelectric points (Fig. 2), were subjected to tryptic digestion
and tandem mass spectrometry; these three spots were also identified
as myoglobin (Table 5). Appearance of four spots identified as myoglo-
bin suggested the possibility of post-translational modifications (Farley
& Link, 2009). Post-translational modification of proteins via phosphor-
ylation leads to an acidic shift in the isoelectric pH (Maurides, Akkaraju,
& Jagus, 1989; Zhu, Zhao, Lubman,Miller, & Barder, 2005) as observed in
Fig. 2. Nonetheless, we did not confirm phosphorylation of myoglobin.
The spot over-abundant in color-labile steaks (spot 12) exhibited the
most acidic isoelectric point (Fig. 2) insinuating that myoglobin may
be post-translationally modified at a greater degree in color-labile
steaks than in color-stable ones and that thismodificationmay compro-
mise color stability.While previous studies have reported carbonylation
of beef myoglobin (Alderton, Faustman, Liebler, & Hill, 2003; Suman
et al., 2007), phosphorylation of myoglobin is yet to be reported in
meat-producing livestock. Further research is necessary to examine
the possibility of myoglobin phosphorylation and its implication in
meat color stability.
eef Longissimus lumborum steak. Four myoglobin spots detected in color-stable and color-



Table 5
Myoglobin spots identified in the sarcoplasmic proteome of color-stable and color-labile beef Longissimus lumborum steaks.

Spota Accession no. Protein Species ProtScore/matched peptides Sequence coverage (%)

12 P02192 Myoglobin Bos taurus 12.00/11 48.1
13 P02192 Myoglobin Bos taurus 9.49/7 48.1
14 P02192 Myoglobin Bos taurus 13.77/13 58.4
15 P02192 Myoglobin Bos taurus 14.00/13 58.4

For each spot, parameters related to protein identification are provided, including accession number; species; ProtScore and number ofmatchedpeptides; sequence coverageof peptides in
tandem mass spectrometry.

a Spot number refers to the numbered spots in gel image (Fig. 2).
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Phosphoproteomics is an emerging area in life sciences (Mayya &
Han, 2009), and recently an attempt was made to evaluate the relation-
ship between protein phosphorylation and beef tenderness. Anderson
et al. (2014) examined the role of phosphorylation in tenderness of
beef longissimus and reported that the least phosphorylated isoform
of phosphoglucomutase enzyme was over-abundant in the less tender
beef samples. These findings indicated the potential of protein post-
translational modifications as biomarkers for meat quality.
4. Conclusions

The results of the present study indicate that the animal-to-animal
variations observed in beef LL color stability during retail display could
be attributed to the differences in sarcoplasmic proteome profile.
The over-abundance of glycolytic enzymes in the color-stable LL steaks
contributes to improved color stability possibly through NADH
regeneration in post-mortem muscles. In addition, possible in situ post-
translationalmodification ofmyoglobin in color-labile LL steaks appeared
to compromise color stability. Further studies should examine the roles of
post-translational modifications of myoglobin as well as the interactions
between genome and muscle proteome in beef color stability so that
biomarkers can be identified for this economically important quality
attribute.
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